Ionosphere-Distance Calculations

Whitham D. Reeve

A. Great circle distance:

The total great circle arc angle Φ and distance d between two stations are found from the station coordinates (latitude and longitude).

$$\cos(\Phi) = \sin A \cdot \sin C + \cos A \cdot \cos C \cdot \cos \Delta L \tag{1}$$

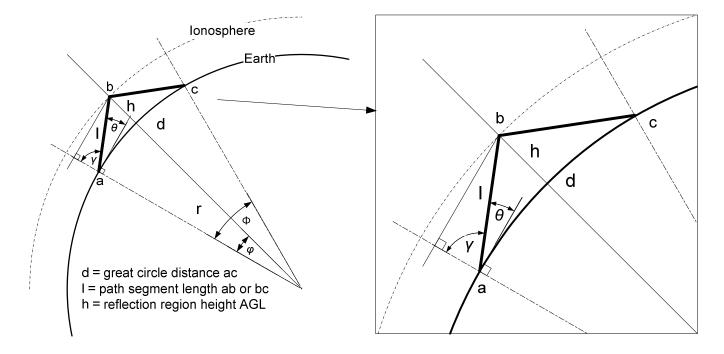
where (all angles use the same units, all degrees or all radians)

 Φ = Angle of the great circle arc from transmitter a and receiver c

A = latitude of station a (+ for northern hemisphere)

C = latitude of station c (+ for northern hemisphere)

 ΔL = angular difference in longitude between stations a and c (magnitude > 0)


$$\Phi = arc\cos(\sin A \cdot \sin C + \cos A \cdot \cos C \cdot \cos \Delta L)$$
 (2)

$$d = r \cdot \Phi = 111.2 \cdot \Phi^{\circ} \text{ km}$$
 (3.a)

$$d = r \cdot \Phi = 6370 \cdot \Phi^{rad} \text{ km} \tag{3.b}$$

For additional details on position, distance and bearing calculations, see [PDBC].

B. Radio path length:

A hop is defined as the radio path from the ground up to the reflection (refraction) region and back down to the ground. For a 1-hop circuit a-b-c, the total radio path length is $2 \cdot I$ and for an m-hop circuit the total path length is $2 \cdot m \cdot I$.

$$\varphi = \frac{\Phi}{2 \cdot m} \tag{4}$$

From Law of Cosines, the radio path segment length I is given by

$$I^{2} = r^{2} + (r+h)^{2} - 2 \cdot r \cdot (r+h) \cdot \cos \varphi$$
(5a)

Equivalently,

$$I^2 = 2 \cdot r \cdot (r+h) \cdot (1-\cos\varphi) + h^2 \tag{5b}$$

and

$$I = \sqrt{2 \cdot r \cdot (r+h) \cdot (1-\cos\varphi) + h^2}$$
(5c)

where

 φ = Angle of the great circle arc from transmitter a (or receiver c) and point on Earth below reflection (refraction) region b

I = path segment length from transmitter a (or receiver c) to reflection (refraction) region b (km)

r = Earth radius (6370 km)

h = height of reflection region above ground level (km)

C. Elevation angle:

By inspection

$$I \cdot \sin \gamma = (r+h) \cdot \sin \varphi \tag{6}$$

where

 γ = angle between Earth radial to transmitter a (or receiver c) and radio path I. Note: $\gamma < \frac{\pi}{2}$ rad.

Therefore,

$$\sin \gamma = \frac{(r+h) \cdot \sin \varphi}{I} \tag{7}$$

and,

$$\sin \gamma = \frac{(r+h) \cdot \sin \varphi}{\sqrt{2 \cdot r \cdot (r+h) \cdot (1 - \cos \varphi) + h^2}}$$
(8)

Solving for γ gives

$$\gamma = \arcsin\left(\frac{(r+h)\cdot\sin\varphi}{\sqrt{2\cdot r\cdot(r+h)\cdot(1-\cos\varphi)+h^2}}\right)$$
(9)

By inspection, the elevation angle Θ (radians) is

$$\theta = \frac{\pi}{2} - \gamma \tag{10}$$

and

$$\theta = \frac{\pi}{2} - \arcsin\left(\frac{(r+h)\cdot\sin\varphi}{\sqrt{2\cdot r\cdot(r+h)\cdot(1-\cos\varphi) + h^2}}\right) \tag{11}$$

Note: θ must be ≥ 0

References:

[PDBC] Reeve, W., Position, Distance and Bearing Calculations, 2014,

http://www.reeve.com/Documents/Articles%20Papers/Reeve_PosDistBrngCalcs.pdf

[SFD] Reeve, W., Sudden Frequency Deviations Due to Solar Flares, 2014,

http://www.reeve.com/Documents/Articles%20Papers/Reeve SudFregDev.pdf

Document Information

Author: Whitham D. Reeve

Copyright: ©2014, 2018, 2020, 2022, 2025 W. Reeve

Revisions: 0.0 (Adapted from Radio Engineering Guide, Appendix A (1995), 21 Jun 2014)

0.1 (Minor revisions, 30 Jun 2014)

1.0 (Distribution, 1 Jul 2014)

1.1 (Revised drawing, 25 Dec 2014)

1.2 (Minor edits, 1 Sep 2018)

1.3 (Retitled, 1 Sep 2018)

1.4 (Clarified gamma, 31 Dec 2020)

1.5 (Corrected eq. (2) and (3), 16 Jan 2022)

1.6 (Clarified drawings and associated equations, 9 Nov 2025)

Word count: 343

File size (bytes): 3180544