
See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 1

AirSpy Server on the Raspberry Pi 3

Whitham D. Reve

1. Introduction

The diminutive and inexpensive Raspberry Pi computer platform may be used as a server for the AirSpy receiver.

The server allows remote access and control of the receiver by a client PC running SDR# (figure 1). The hardware

and software aspects of the server installation are covered here. The server application software is called

spyserver or AirSpy Server in this document and is available as a free download from the receiver manufacturer.

It supports multiple simultaneous client connections over a local area network or the Internet. The advantage of

the server is its ability to reduce the bandwidth requirements of the access connection.

AirSpy
RPi 3

Figure 1 ~ Block
diagram of the AirSpy
Server and Clients. The
IP addresses 10.0.0.x
and 192.168.1.x are
non-routable addresses
used in the respective
local area networks.
The only software
required besides the
operating systems are
the AirSpy Server,
associated libraries and
SDR# application.

The AirSpy (figure 2) is a popular and relatively low cost (169 USD) software defined radio receiver that has been

used in radio astronomy applications since its introduction in 2014. The AirSpy’s native frequency range is 24 to

1800 MHz with up to 10 MHz wide spectrum view. For lower frequencies the manufacturer has an up-converter

called SpyVerter (49 USD) that extends the range down to 1 kHz and the AirSpy HF+ (199 USD) that has a range

of 9 kHz to 31 MHz and 60 to 260 MHz. The SpyVerter is accommodated in the server by frequency offset and

activation of the receiver’s built-in bias-tee for powering. Separate setups are needed for the original AirSpy and

AirSpy HF+.

Figure 2 ~ AirSpy receiver (left) and SpyVerter (right). The two modules may
be connected by an SMA-M to SMA-M coupler (middle) or coaxial cable. The
SpyVerter is powered by the receiver through internal bias-tees. Dimensions
of each module are 53 x 40 x 25 mm not including the SMA-F RF connectors.

The AirSpy receiver uses a USB port for power and control. Before the server application software became

available, the receiver needed to be close to a desktop or laptop PC running the control software such as SDR#.

This is not an optimum operational setup because of possible radio frequency interference and long antenna

cable lengths. Another problem is that remote access to the AirSpy is impeded or impossible because of the high

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 2

network bandwidth requirements. Using the Raspberry Pi (RPi) as a server allows the receiver and RPi to be

placed closer to the antenna or farther from sources of RFI yet still easily controlled. The RPi server powers the

receiver and performs initial signal processing to greatly reduce the network connection bandwidth. The RPi

itself requires power and network connections so there still is some cabling involved (figure 3). These potentially

are sources of RFI but presumably are more manageable than a long RF connection to an antenna.

Figure 3 ~ AirSpy receiver and Raspberry
Pi cabling. Because the micro-USB-B
power connector on the RPi is so small,
the wire size in the 2-conductor power
cable is necessarily small.

Receivers compatible with spyserver: AirSpy R0 (original AirSpy receiver), AirSpy R2 (2nd generation), AirSpy HF+,

AirSpy Mini and RTL-SDR. The AirSpy Server also supports heterodyne converters such as the SpyVerter up-

converter. For information on the AirSpy receivers see {AirSpy}. For this article, I used only the AirSpy R0 and R2

with the server. Note: On 5 March 2018 AirSpy announced that the tuner integrated circuit (IC) used in the

AirSpy R2 and Mini was discontinued and these receivers no longer will be manufactured. They also indicated

that a replacement may be developed using a different tuner IC. Presumably, any new receiver product will be

compatible with the spyserver.

Spyserver installations: When spyserver is installed as discussed in the following sections, it is setup for only one

basic receiver type. For example, the spyserver can be installed for the R0 and R2. If the RPi hardware is to be

used later with the HF+, the drivers for the HF+ must be installed on the RPi memory card. I do not know if the

drivers for the R0/R2 and HF+ coexist. In the worst case, if both receiver types are to be used, two separate RPi

installations may be needed. It is a simple matter to install the spyserver software on a memory card to be used

for the R0 and R2 and on another memory card to be used for the HF+. If desired, two RPis, one with spyserver

for the R0 or R2 and another for the HF+, can be operated simultaneously on a local area network. Each

spyserver will have its own network address.

2. Hardware Installation

Raspberry Pi: I successfully installed and operated the spyserver on the Raspberry Pi 3 model B (RPi3), Raspberry

Pi 3 model B+ (RPi3+) and Raspberry Pi 2 model B (RPi2), but I suspect the RPi2 does not support as many

simultaneous connections as the RPi3 or RPi3+. I did not attempt to install spyserver on the other Raspberry Pi

platforms (Zero, A, B and B+) and I did not run as many tests on the RPi2 and RPi3+ as on the RPi3. The RPi3+

was newly released in mid-March 2018 and I only had time to verify operation and did not do extensive testing.

From here on, I will refer only to the RPi3.

No other hardware components are needed except those described in this section. The RPi3 is setup and

operated in a “headless” mode in which no display, keyboard or mouse is connected to the RPi3. All installation

activity is through a PC on the same LAN as the RPi3 using a command line interface (console) such as PuTTY or

Tera Term. In this application the RPi3 is dedicated to the single purpose of running the server.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 3

Memory card: The operating system and applications software require < 2 GB. I used both 4 GB class 4 and 8 GB

class 10 micro-SD memory cards in the RPi3. There is no requirement for data storage on the spyserver.

Power supply: The dc input current to the RPi3 varies with its processing load, which depends on the spyserver

digital signal processing settings and number of active connections. Higher spectral bandwidths result in higher

processor loads. The RPi3 input current also is increased by loads powered through its USB ports, which includes

the AirSpy receiver. It is very important to use the RPi3 with an adequate power supply (5.0 to 5.5 Vdc, 2.0 to 2.5

A) and a high quality power cable. The RPi3 has an onboard 2.5 A resettable PTC fuse and polarity guard, both of

which introduce some voltage drop. Excessive voltage drop in the power cable or a weak power supply is

manifested as failure to boot or intermittent and unreliable operation (lockup). Generally, inadequate input

voltage may be observed on the red Power LED on the RPi3 PCB. If the red LED flashes or goes out completely

during the boot process or any other time, the input voltage drop is too high. See section 7 for current and

power measurements of the RPi3 while running the AirSpy Server software with active connections.

A short power cable will minimize voltage drop, and a power supply with 5.5 Vdc output will provide some input

margin. However, in a remote installation, the power cable necessarily will be relatively long. Cables for the tiny

USB-micro-B power connector on the RPi3 have small conductors and could cause voltage drop problems. The

largest conductors I have seen are 22 AWG in 3 m long cables from {Volutz}. That length probably is too short for

most remote setups. One solution is to splice a short cable with a USB-micro-B connector on one end to a larger

gauge cable run to the system power supply (figure 4). The voltage drop in the power cable should be ≤ 0.25 V at

a current of 2.0 A. This is equivalent to ≤ 0.125 ohms cable loop resistance or about 5 m of 16 AWG (1.5 mm), 2-

conductor cable. To minimize noise, the power cable (both conductors) should be wound several turns through

ferrite beads (such as clamshell beads), one at each end of the cable.

Figure 4a ~ RPi3 power cable consists of larger power
supply conductors spliced to the red and black conductors
in the USB-micro-B power adapter cable. A ferrite bead is
placed at each end of the cable. The data conductors on
pins 2 and 4 of the USB connector are not used and should
be tied or cut back.

Figure 4b ~ USB-Micro-B power adapter cable. The cable is
cut from a regular 300 mm long USB adapter cable, which
in this case has a right-angle USB-micro-B connector
(upper-right). The yellow/black PowerPole connectors
(upper-left) are a splice point for connection to a larger
power supply cable. In my station power systems, all
connectors are color-coded and yellow/black indicates 5 V.

Cooling: The RPi3 processor runs hot when the AirSpy Server has active connections unless it is externally

cooled. If the RPi3 processor gets too hot, it automatically reduces its clock. I do not know if this guarantees

against device failure or reduced life caused by overheating but the reduced clock likely will adversely affect

performance. In any case, I recommend using passive and active cooling. For passive cooling, small heatsinks are

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 4

available for installation on the CPU system on a chip (SoC), USB/Ethernet controller and RAM integrated circuits

(IC). These usually are stick-on types held with what should be thermally conductive adhesive. The available

heatsinks are copper or aluminum, but copper is more thermally conductive and provides better cooling than

aluminum.

There are several active cooling methods available including small fans that clamp directly to the RPi3 PCB and

enclosures that have a preinstalled fan. The fans usually are rated 5 Vdc and can be powered directly from the

RPi3 GPIO connector pins 4 and 6 (5 V and GND, respectively). Note: It may be tempting to connect the fan to

the RPi3 internal 3.3 V bus (GPIO pins 1 and 6) to reduce its speed and therefore noise; however, the 3.3 V bus is

not designed for a fan load, and fan noise is hardly noticeable.

I built two systems, one with fan only and another with fan and heatsinks. I acquired both enclosures through

eBay (figure 5). AliExpress is another source. Using an enclosure without a fan is not recommended because of

heat build-up. See section 7 for comparative temperature measurements using these cooling methods.

Figure 5 ~ RPi cooling using passive and active methods.

Upper: Two examples of extruded aluminum enclosures for
the Air Spyservers shown with an Airspy R2. The left
enclosure has a 25 mm fan mounted on the top part of the
clamshell enclosure, but the RPi2 PCB inside does not have
heatsinks. The right enclosure is slightly larger and has a 25
mm fan mounted on one end panel. The fans blow warmed
air out through slots in the enclosures. I found the right
enclosure to be quite fiddly and the fan end panel
interfered with the RPi3 memory card (the enclosure
should be at least 2 mm longer). I ended up removing the
two lower fan screws so the end panel could close
completely as shown here. I later replaced the 10 mm thick
fan with one that is only 7 mm thick, which allows shorter
mounting screws with sufficient clearance.

Lower: RPi3 PCB with copper pin-finned heatsinks shown
on the CPU (near center of PCB) and USB/Ethernet
controller integrated circuits (next to USB connectors at
top-left of image). Not shown is the RAM IC on the bottom,
which uses a flat plate heatsink. This set of heatsinks costs
about 1 USD including shipping. Also shown is the 5 V fan
and end panel associated with the enclosure; the fan is
connected to the GPIO connector pins 4 and 6.

Network and USB connectivity: The RPi3 has one 10/100 Mb s–1 Ethernet port and four USB 2.0 ports. The USB

and Ethernet interfaces are handled by a single integrated circuit. The Ethernet port on the RPi3 connects to the

SoC through the internal USB 2.0 bus. The RPi3+ uses a GigE (1000BaseT) Ethernet connector and interface but

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 5

still is limited by the internal USB 2.0 bus speeds. However, there supposedly is some gain in Ethernet interface

performance with speeds approacing 300 Mb s–1. The RPi3 and RPi3+ also have built-in WiFi capability (2.4 GHz,

802.11n) but I did not attempt to use it. WiFi is unlikely to work very well except when compression is used on

the streaming data (described in section 6). If the RPi3 is installed in a metallic enclosure, the built-in WiFi will

not work at all.

The AirSpy receiver has one USB 2.0 port. Therefore, the digital rate between the AirSpy receiver and RPi3 is at

most 480 Mb s–1 and the rate between the RPi3 and local area network is at most 100 Mb s–1 (approximately 300

Mb s–1 for the RPi3+). These are interface speeds. Payload speeds are considerably lower, 1/10 to at best 1/2 the

interface speeds. For trouble-free operation, it is imperative to use high-quality cables for connectivity including

cables for the USB, Ethernet and antenna connections.

3. Software Installation

The AirSpy Server software installation involves downloading and installing the operating system and several

application and library files. Follow the steps below in order. Note: If the spyserver is setup for the AirSpy R0 and

R2 it will not work with the AirSpy HF+; similarly, if it is setup for the AirSpy HF+ it will not work with the R0 or

R2. Therefore, the following steps diverge slightly depending on the receiver to be used.

It will take longer to read through this document than to actually install the software, which requires around 10

to 15 minutes. Spyserver v2.0.1629 was the version available at the time this document was written. The

software can be considered in development and is not yet perfect. Section 6 includes some operating notes.

Operating system: Install the operating system as described in Raspberry Pi Basic Setup {RPiBasic}. My

installation is based on the versions of Raspbian Stretch Lite {Stretch} that was available in January and March

2018. Note: If Raspbian Stretch Lite is superseded by a later version, the server software may not work unless it,

too, has been updated to be compatible. Presumably, compatibility information will be provided in the

spyserver release notes provided by the manufacturer.

The default User pi should be used when logging into the RPi3 and provisioning the spyserver. The default

Password is raspberry and it must be changed if the spyserver is to be connected to the internet.

The host name should be changed to something more easily recognized on the LAN (for example, spyserver).

Procedures for the password and host name changes are described in the basic setup document referenced

above. For best trouble-free operation, the spyserver should be setup with a fixed IP address. Although it may

be configured for a static IP address as described in {Static}, LAN management is much easier if the IP address is

reserved in the LAN router DHCP server, in which case the router will always assign the same IP address when a

DHCP request comes from the RPi3.

Make note of the RPi3 IP address from the basic setup or find it using NetScan, Advanced IP Scanner or AngryIP

(figure 6). The default host name is raspberrypi and it will appear as such in the IP address scan unless it has

been changed as mentioned above.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 6

Figure 6 ~ Screenshot of NetScan showing the
Raspberry Pi spyserver at IP address 10.0.0.74.
This image was acquired after the host name of
the RPi3 was changed to spyserver.

Upgrade the operating system to the latest available components. Using PuTTY or other terminal emulator, login

to the RPi3 and at the prompt enter:
sudo apt-get update

sudo apt-get upgrade

sudo reboot

Spyserver application software: The application software includes the spyserver and associated libraries. Many

command line entries below are easily handled by copying from this document one line at a time and pasting

into the PuTTY prompt. See {RPiBasic} for copy/paste procedures. However, if a command returns an error it

may be because a character is not coded properly by Word when written to the PDF. In this case, simply hand-

type the command.

Download and install the latest version of the required libraries:
sudo apt-get install build-essential cmake libusb-1.0-0-dev pkg-config

Note: If the above command returns an error about cmake not being installed or available, run the following

command and then try again:
sudo apt-get update

At this point, the procedures diverge slightly for the AirSpy R0 and R2 and the AirSpy HF+. Follow steps 1. and 2.

only for the AirSpy R0 and R2 and follow steps 3. and 4. only for the AirSpy HF+.

AirSpy R0 and R2:

1. Download and compile the airspyone driver software:
wget https://github.com/airspy/airspyone_host/archive/master.zip

unzip master.zip

cd airspyone_host-master

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON

make

sudo make install

sudo ldconfig

2. Clean out temporary files while in the airspyone_host-master/build directory:
rm -rf *

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 7

AirSpy HF+:

3. Download and compile the airspyhf driver software:
wget https://github.com/airspy/airspyhf/archive/master.zip

unzip master.zip

cd airspyhf-master

mkdir build

cd build

cmake ../ -DINSTALL_UDEV_RULES=ON

make

sudo make install

sudo ldconfig

4. Clean out temporary files while in the airspyhf-master/build directory:
rm -rf *

Follow the remaining steps for both the AirSpy R0 and R2 and the AirSpy HF+.

Prepare a directory for the spyserver application:
mkdir ~/spyserver

Download and extract the airspy server software package to the new directory:
wget https://airspy.com/downloads/spyserver-arm32.tgz

tar xvf spyserver-arm32.tgz -C ~/spyserver

Note: The second command above may not work properly when copied/pasted from the PDF file because of

improper ASCII coding of the dash character - in -C. Simply hand-type the command being sure to use upper-

case C.

Double-check that two files are installed in the spyserver directory:
cd ~/spyserver

ls

Two files should be shown: spyserver and spyserver.config

While in the spyserver directory, change permissions on the spyserver file to make it executable:
sudo chmod +x spyserver

Install the GNU Compiler Collection, GCC-5, and reboot
sudo apt-get install –y gcc-5

sudo reboot

Note: If GCC-5 is not available, try GCC-6 (replace gcc-5 with gcc-6 in the first command above)

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 8

4. Configuring and Running AirSpy Server

This section describes a basic setup that can be used to verify proper software installation. Additional

operational details are given in sections 5 and 6. The AirSpy receiver does not need to be connected to the RPi3

server until later in this section but there is no harm in connecting it now.

Configure the airspy server: Connect to the RPi using PuTTY or other terminal emulator. After logging in, change

to the spyserver directory and edit the configuration file:
cd ~/spyserver

sudo nano spyserver.config

Scroll down to the bind_host parameter and change the IP address shown there to the RPi3 IP address

determined in section 3 above (figure 7). If this is not done correctly, when SDR# attempts to connect, it will

display an error window that indicates spyserver refused the connection (figure 8). If the IP address of the RPi3

is changed for any reason, such as replacing the RPi3 hardware, the bind_host parameter must be updated with

the new IP address.

Figure 7 ~ Screenshot of the AirSpy Server
configuration file showing the IP address assigned
to the bind_host parameter. In this example,
the address is 10.0.0.74.

Figure 8 ~ SDR# error window indicating that the bind_host
parameter does not match the RPi3 spyserver IP address.

The default configuration uses the AirSpyOne device (AirSpy R0, R2 or Mini). If a different receiver is to be used,

the configuration must be changed. Scroll down to the device_type parameter and change to the desired

receiver type, selecting from the list indicated.

Device Type
Possible Values:
AirspyOne (R0, R2, Mini)
AirspyHF+
RTL-SDR

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 9

#

device_type = AirspyOne [change to desired receiver type]

Scroll down to the line #device_sample_rate and delete the hash character # to uncomment the line and then

change as necessary for the receiver device_type set above.

Device Sample Rate
Possible Values:
Airspy R0, R2 : 10000000 or 2500000
Airspy Mini : 6000000 or 3000000
Airspy HF+ : 768000
RTL-SDR : 500000 to 3200000
Comment to use the device's default
#

device_sample_rate = 2500000 [change to the rate required by the device]

For the AirSpy R0 and R2, change to 2 500 000 without spaces between the numbers (spaces are shown here

for clarity) (figure 9). This sets the sample rate to 2.5 Msample s–1, which allows a displayed spectrum bandwidth

of 2 MHz. This value can be increased later to 10 000 000 (without spaces) or 10 Msample s–1 for a displayed

bandwidth of 8 MHz but the lower value should be used for initial setup and testing.

Figure 9 ~ Another screenshot of PuTTY showing
the AirSpy Server configuration file in which the
device_sample_rate parameter has been
uncommented (hash mark # deleted) and
changed to 2500000 samples per second.

When finished with all the changes to the configuration file, save the changes and exit the editor (CTRL-X, Y,

Enter).

Physical connections: At this point, the software installation is ready for testing. Connect the receiver to the RPi3

USB port using a high-quality USB-A to USB-micro-B cable, preferably the one supplied with the receiver. Any

one of the four RPi3 USB ports may be used.

Run the server: The spyserver must be run from the spyserver directory. Enter
cd ~/spyserver

./spyserver spyserver.config

Note: The spyserver.config option is the default and may be eliminated from the second command line

above (that is, simply enter ./spyserver).

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 10

The PuTTY command line interface should indicate that the spyserver is listening on the IP address configured

above and port 5555 (figure 10). The spyserver version is also shown.

Figure 10 ~ Screenshot of PuTTY showing at the
bottom the command to run the AirSpy Server
using the spyserver.config configuration file. It has
successfully connected to the AirSpy receiver and
is listening for client connections on port 5555.

SDR# client: Install the latest version of SDR# on the Windows PC to be used as a client {AirSpyPkg}. Be sure to

note and comply with the PC and operating system requirements for SDR# (for example, it does not run on

Windows XP). See section 6 for an alternative to SDR# that also is compatible with the spyserver, but initial

testing should use SDR#. If a previous version of SDR# already exists on the PC, upgrade to the latest. With The

AirSpy Server running, open SDR# on the client PC (figure 11). In the Sources dropdown list (upper-left corner of

SDR#) select Spy Server (if necessary, first click the Gear icon). Using the format sdr://x.x.x.x:5555, enter the IP

address and port of the spyserver in the field below the source selection. The default port number is 5555 as

defined by the bind_port parameter in the configuration file. After entering, press the Connect (C) button to

the right of the address:port field. Refer back to the PuTTY interface to see the connection (figure 12). The

Connect button is a toggle that can be pressed again to disconnect SDR# at any time.

Figure 11 ~ Screenshots of SDR# Source selection dropdown list (left) and IP address and port number (right) using SDR#
v1.0.0.1637. SDR# is not yet connected in the right screenshot. When connected, the IP address and port field is grayed out.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 11

As shown in the right image, SDR# is set to demodulate wideband FM (WFM) but connection bandwidth can be greatly
reduced by selecting RAW (no demodulation) instead.

Figure 12 ~ Screenshot of PuTTY showing a
successful client connection to the AirSpy Server.
The connected client IP address is 10.0.0.128.
Various parameters are exchanged by the SDR#
client and spyserver, and these are shown after
the connection.

Now click the Play (triangle) icon in upper-left corner of SDR#. At this point the AirSpy receiver is under control

of the SDR# client and activity should be indicated in the spectrum window to the right. The Play icon will

change to a Stop (square) icon (figure 13). If the AirSpy Server is not running, SDR# will produce an error window

(figure 14). Note that the SDR# connection can be established by simply pressing the Play button without first

pressing the Connect button. However, pressing the Stop button does not disconnect the SDR# client.

Disconnection is only through the Connect button toggle.

Figure 13 ~ Screenshot of SDR# showing a successful connection by an SDR# client to the AirSpy Server. The displayed
bandwidth is 2 MHz and the receiver is tuned to a local FM broadcast station at 98.1 MHz. The Play icon has changed to a
Stop icon and the spectrum display window is active. Note also that the server IP address and port fields are grayed out. In
this image the Gain control slider is active, indicating it is the first client connection and has control.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 12

Figure 14 ~ An error window is produced by SDR# if the connection
attempt fails either because the server is not running, it is not
accessible because of a LAN problem or the wrong IP address is
entered in SDR#.

Testing: After installation is completed and when first running and connecting to the server, it is recommended

to tune the receiver to the FM broadcast band (88 to 108 MHz) to confirm that the receiver and antenna

connections are working properly. Even if the receiver and antenna are to be used in other frequency bands,

reception of FM broadcast stations should be possible unless an FM band reject filter is used. For the test images

shown here I connected a small telescoping whip antenna directly to the AirSpy RF input jack.

Start and stop the spyserver: For the basic setup described above, first change to the spyserver directory and

start spyserver by entering:
cd ~/spyserver

./spyserver spyserver.config

To stop spyserver, enter at the PuTTY command line session used to run the application:
CTRL-c

A method is described in the next section that automatically opens the spyserver when the RPi3 starts or is

rebooted.

Updates: Over time, the spyserver software will be updated. The update process is simple but it is important to

backup the spyserver configuration file. Updating will overwrite the existing spyserver.config file and any user

changes will be lost. To update, copy the configuration file to backup:
cd ~/spyserver

cp spyserver.config spyserver.back

Download the updated spyserver software and extract it:
wget https://airspy.com/downloads/spyserver-arm32.tgz

tar xvf spyserver-arm32.tgz -C ~/spyserver

Note: Be careful of the dash character in -C if copy/pasting the second command above.

Now, replace the default configuration file with the backup
cp spyserver.back spyserver.config

5. Automatic Operation as a Service

The basic setup described above requires the AirSpy Server program to be manually opened when the RPi3 is

cold started or rebooted. The spyserver can be optionally setup to start automatically. Skip this section if you

require only manual operation.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 13

There are a number of ways to setup the software so that the spyserver is automatically opened when the RPi3

is cold started or rebooted. I use the systemd daemon manager in Linux to setup the AirSpy Server as a service,

which can be enabled to open automatically. Do the following steps if automatic operation is desired:

Use the nano editor to open a new service unit configuration file called spyserver.service:
sudo nano /etc/systemd/system/spyserver.service

The editor will open an empty file. Add the following parameters to the file (figure 15):
[Unit]

Description=AirSpy Spyserver Service

After=multi-user.target

[Service]

Type=idle

ExecStart=/home/pi/spyserver/spyserver /home/pi/spyserver/spyserver.config

Restart=always

[Install]

WantedBy=multi-user.target

Save the changes and exit the editor (CTRL-X, Y, Enter).

Figure 15 ~ Screenshot of the nano editor showing
the complete contents of the service Unit file. The
Description parameter provides a label that is
referenced whenever the service is queried or
reported. The Type parameter requires that the
ExecStart parameter only be run after all other
processes have loaded. The Restart parameter is
not shown in this screenshot.

Setup the permissions on the service file (readable and writable by all users):
sudo chmod 777 /etc/systemd/system/spyserver.service

Load the new service file, enable the spyserver.service and reboot
sudo systemctl daemon-reload

sudo systemctl enable spyserver.service

sudo reboot

When the RPi3 reboots, the spyserver will start automatically. The status of the spyserver.service can be

checked with (figure 16):
sudo service spyserver status

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 14

Figure 16 ~ Status of the spyserver.service when
running indicates that the service is enabled and
Active. It also shows when the service was
started, in this case at 21:03:34 on Feb 6.

The spyserver.service can be stopped, started, and restarted with the following commands (the stop command

does not survive a reboot):
sudo service spyserver stop

sudo service spyserver start

sudo service spyserver restart

When the command executes properly, it will return the command line prompt after a moment; otherwise, it

will return an error message. The restart command is used after changes are made to the spyserver

configuration file. Alternately, before making changes, stop the service and then after changes are completed,

start the service.

The spyserver.service can be disabled by entering:
sudo systemctl disable spyserver.service

To re-enable the spyserver.service enter:
sudo systemctl enable spyserver.service

Both the disable and enable commands survive a reboot.

After the spyserver.service has been disabled, the spyserver can be manually started and stopped as described

in the basic setup.

6. Operating Notes

This section applies to spyserver v2.0.1629 and SDR# v1.0.0.1655. Operating information and some defects are

discussed below.

Inconsistent SDR# operation: Some parameters in SDR# when used with spyserver, for example, Resolution in

the FFT Display tab and others, may be changed when SDR# is first opened but before spyserver is connected.

Connecting the spyserver causes these parameters to be grayed out, but they stay grayed out after spyserver

has been disconnected. Closing SDR# and then opening it usually will make the parameter available again. Other

parameters do not seem to perform a function when used with spyserver so some experimentation will be

necessary.

USB interference: When the spyserver is in operation with the RPi2 and RPi3, the spectrum display shows

pulsing spikes with a spacing of about 450 kHz without regard to center frequency setting. These spikes rise and

fall with a period of about 1 s, seem to come and go and sometimes rise 15 dB above the noise floor to a level

near –60 dBFS (dB with respect to Full Scale of the AirSpy analog-digital converter). The pulsing spikes are most

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 15

apparent at lower gain settings where the noise floor is lower. I tried many mitigation measures (different

power supplies, different cables, ferrite beads, and more) with no success. I found that simply stopping and then

starting spyserver changed the pulse levels or eliminated them altogether. Generally, the pulsing spectrum can

be reduced by setting the receiver gain above 10; see next item. I noted that this problem does not appear when

using the RPi3+, possibly because it has slightly better performance.

Gain setting: The gain setting in SDR# operates differently when used with spyserver than when the AirSpy

receiver is connected directly to a PC. When using spyserver, the LNA, mixer and IF gains are linked to a single

control in SDR#. Some experimentation will be necessary for best performance. The gain setting used when

SDR# first connects to the spyserver is specified by the initial_gain parameter in the spyserver.config file.

Open the spyserver.config file using the nano editor:
cd ~/spyserver

sudo nano spyserver.config

Now, scroll down to the initial_gain parameter and change to 10.

Initial Gain
#
initial_gain = 10

After saving the changes (CTRL X, Y, Enter), restart the spyserver.
sudo service spyserver restart

Operational limits: The spyserver configuration file may be used to specify several operational limits including

bandwidth, frequency limits and initial frequency, number of simultaneous connections and session duration.

The configuration file includes brief comments for each parameter and experimentation is suggested. Only the

first SDR# connection controls the center frequency, span and gain of the AirSpy receiver. Subsequent client

connections can tune within the frequency range set by the first client but cannot change any other operational

parameter.

Performance: Connection performance can be adjusted with SDR#. When the Use Full IQ option in the Source

tab of SDR# is checked, the server sends full rate I/Q data from the receiver to the client; however, this requires

a lot of network bandwidth (table 1) and probably is not practical over the internet or even over many LANs.

Uncheck the Use Full IQ option and then use the IQ Format option to adjust the number of bits per sample. This

effectively increases the data compression and lowers the data rate. During operation the data rate is shown in

real-time next to the Use Full IQ checkbox and it can be used to compare different IQ Format settings. For

internet connectivity the IQ Format should be set to PCM 8bit but there will be some loss in dynamic range.

Performance and data rate also can be adjusted by editing the spyserver configuration file. The spyserver.config

parameters that may be changed by the user to adjust the data rate are device sample rate

(device_sample_rate), FFT bin bits (fft_bin_bits), FFT frames per second (fft_fps) and force 8-bit mode

(force_8bit). Generally, a reduction in sample rate, FFT bin bits or FFT frame rate will reduce not only the

network load but also the span, fidelity or resolution of the spectrum display. The force 8-bit mode in the

configuration file overrides the IQ Format setting in SDR#. Another parameter in the configuration file that can

be adjusted to limit the network bandwidth usage is the number of simultaneous clients or user sessions

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 16

(maximum_clients). The default is 10 and lower values will limit the number of clients and, thus, limit the

network usage.

Table 1 ~ Bit rates displayed in the SDR# client while tuned to
a VHF FM broadcast station and 2 MHz bandwidth.

Demodulation SDR# Setting Rate
WFM Full IQ 5.2 Mb s

–1

WFM Float 32 bit 1.3 Mb s
–1

WFM PCM 24 bit 961 kb s
–1

WFM PCM 16 bit 660 kb s
–1

WFM PCM 8 bit 331 kb s
–1

Raw PCM 8 bit 32 kb s
–1

Choppy audio can occur on older PCs and slow internet connections. To improve performance in these

situations, adjust the FFT frame rate parameter fft_fps in the configuration file. The default is 15, and lower

values will improve performance at the expense of a more pixelated waterfall display in the SDR# client. Also,

increase the buffer parameters buffer_size_ms and buffer_count. The default settings are 50 and 10,

respectively. The best settings will depend on the available network bandwidth between the client and server

and other factors. Experimentation is recommended.

Remote access: Users who access the spyserver via the Internet will use the public IP address of the gateway

where the spyserver is installed. The entry in the field below the Sources drop-down list will use the same

format as a local connection; that is, sdr://xxx.xxx.xxx.xxx:5555, where in this case xxx.xxx.xxx.xxx is the public IP

address. The public IP address can be determined from the local router/gateway. See also next item. AirSpy

maintains a list of remote spyservers at {Spyserver}.

IP port: The default port number for the spyserver is 5555 but any port number may be used. The port number is

changed in the spyserver configuration file (parameter bind_port), and it also must be changed in the SDR#

client setup. If the AirSpy Server is to be accessed through the internet, the same port must be setup for

forwarding in the local internet router (figure 17). If port forwarding is used, the IP address of the AirSpy Server

RPi3 should be set to static or reserved in the router as previously described.

Figure 17 ~ Port forwarding setup
window in the LinkSys WRT1900AC
router/gateway. The bottom entry is for
the spyserver on port 5555 and it is
directed to 10.0.0.74, the IP address of
the RPi3 spyserver. This allows any
external client to connect through the
router to the spyserver on that specific
port. Other routers have an equivalent
setup screen.

SpyVerter: The spyserver installs with a default configuration file that is setup for a standalone AirSpy receiver. If

the SpyVerter up-converter (or another heterodyne converter) is to be used with the AirSpy R0 or R2 receivers,

it is necessary to adjust a few configuration parameters. The configuration may be saved as a uniquely named

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 17

file and then specified as a command line parameter when the server is run. This feature enables many different

configurations for both the standalone and converted setups.

If the SpyVerter is used, edit the spyserver.configuration file:
cd ~/spyserver

sudo nano spyserver.config

Adjust the parameter values shown below for the SpyVerter (different values may be needed for other

converters). As for the bias-tee parameter, according to AirSpy the bias-tee can supply up to 250 mA at 4.5 Vdc

but 50 mA is a more practical limit (the SpyVerter R2 requires only 10 mA). The hash mark # indicates a

commented line; delete the mark if necessary.

Initial Center Frequency, 1000 ≤ Finit ≤ 60000000 Hz
initial_frequency = 7100000
#
Minimum Tunable Frequency, 1000 ≤ Fmin Hz
Comment if using the device default
minimum_frequency = 1000
#
Maximum Tunable Frequency, Fmax ≤ 60000000 Hz
Comment if using the device default
maximum_frequency = 35000000
#
Converter Offset, SpyVerter Foffset = -120000000 Hz positive image
Comment if not using a converter
converter_offset = -120000000
#
Bias-Tee, 1=enable 0=disable
Enable for AirspyOne only – Used for LNAs and SpyVerter
enable_bias_tee = 1
#

After making the changes in nano, the configuration can be saved as a new file. For example, to save the file as

spyverter1.config, enter the following:
CTRL-X

Save modified buffer? (Answering "No" will DISCARD changes.) Y, Enter

File Name to Write [DOS Format]: spyverter1.config Enter

Save file under DIFFERENT NAME? Y, Enter

Enter

To run spyserver with the new configuration file spyverter1.config, enter
cd ~/spyserver

./spyserver spyverter1.config

Timekeeping: By default, the RPi operating system uses Coordinated Universal Time (UTC), and it should be left

that way. The Stretch operating system, unlike earlier versions, does not include the full Network Time Protocol

(NTP) for timekeeping but uses a scaled-down version called Simple NTP (SNTP). This is a client-only version of

NTP that is implemented through the timesync daemon, timesyncd. Timesyncd synchronizes only when the RPi

boots so does not have the precision of NTP. The RPi3 does not have a built-in battery backed real-time clock.

Nevertheless, timesyncd is suitable for the AirSpy Server application, which apparently does not timestamp data

passed to a client. However, the client itself should use NTP as explained below.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 18

Even though precision timekeeping may not be needed in the server, some improvements still can be made. By

default timesyncd uses a compiled-in list of NTP servers. Users in the USA may override the defaults and use

time servers from the US pools. Users in other countries can select time servers specific to their country or

region. To use US server pools, open the timesyncd.conf configuration file with the nano editor:
sudo nano /etc/systemd/timesyncd.conf

Now, uncomment (delete the hash mark #) the parameter NTP= and add US pool time servers to it as follow

(each pool is separated by a space):
NTP=0.us.pool.ntp.org 1.us.pool.ntp.org 2.us.pool.ntp.org 3.us.pool.ntp.org

Local time servers should be used if available; their IP addresses may be entered on the same line (separated by

a space). Save the changes to the configuration file and exit the editor (CTRL-X, Y, Enter). Reboot the RPi3
sudo reboot

To confirm the timekeeping, wait several minutes and then enter:
timedatectl status

The results of this query should show the current time in UTC and the following:
Time zone: Etc/UTC (UTC, +0000)

Network time on: yes

NTP synchronized: yes

The proper functioning of the server pools can be checked by looking at the syslog. Enter:
cat /var/log/syslog | grep systemd-timesyncd

If NTP is to be used instead of timesyncd on the spyserver, timesyncd must be turned off and then NTP can be

installed:
sudo timedatectl set-ntp false

sudo apt-get install ntp

The time server pools used in NTP should be changed to country-specific pools; see {RPiBasic} for additional

information.

The SDR# client program may be used for data logging, and the PC on which it runs should use NTP for

timekeeping. Installing NTP on a Windows PC is described at {NTP}.

Alternative to SDR#: Users may want to try the SDR-Radio Console software {SDR-Radio} with the spyserver. It is

compatible with both the spyserver and a directly connected AirSpy receiver (and other SDR receivers).

However, it is suggested that users first concentrate on SDR# and once satisfied that everything is working then

try SDR-Radio Console.

AirSpy forum: AirSpy operates a forum at {Forum} that, in principle, can be used to discuss their products and to

report problems. However, many users find it unfriendly. The AirSpy poster often is rude to forum members and

insists that unless software bugs are reported in a “more technical way” and “like an engineer's description of

the problem”, there will be no consideration given. For problems not involving software bugs, other forum

members are very helpful.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 19

7. Power and Temperature measurements

Load current measurements: Measurements of a standalone RPi3 indicate it can momentarily draw over 0.7 A

during a cold boot (figure 18). The start-up current does not last more than several seconds. However, if the

power supply is weak or the power cable has high enough resistance, the startup current can result in enough

voltage drop to disrupt the boot process. Normal running current of the RPi3 is around 300 to 350 mA with no

USB port load and 5.0 Vdc input.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Lo
ad

C
u

rr
en

t
(A

)

Time Index (Major Tick = 10 s)

HALT

Power
OFF

Power
ON

Boot
Processes

Figure 18 ~ Standalone Raspberry Pi 3
load current during cold boot, running
and halt processes. No applications were
running and no devices were plugged

into the RPi3 USB ports during these

measurements. A Keithley 2110
benchtop DMM, associated K-I Tool
software and a shop-built current
monitoring fixture were used for the
measurements The sampling interval was
25 ms. It is possible that a shorter
sampling interval would detect larger
current spikes.

The AirSpy receiver is powered through the RPi3 USB port, adding about 300 mA to the RPi3 load current. Also,

when running the AirSpy Server software, the RPi3 load current increases another 200 mA or more due to the

added processing load when data is actively being served to a client or clients. If a fan is used and is powered

from the RPi3 5 V bus, the load will increase even more. In my test system, the fan current rating is 90 mA but

actually added about 50 mA to the dc load (probably indicating the fan is starved or under-loaded).

The load current measurements were made on an operational system consisting of the AirSpy receiver and RPi3

with and without active client connections while tuned to a local FM broadcast station (table 2).

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 20

Table 2 ~ RPi3 AirSpy Server load current measurements with 5.0 Vdc input. Measurements
include up to three active connections. All measurements were with 2 MHz bandwidth. Idle: No
client connection; Opr: Active client connections.

Active Connections Idle (A) Opr (A) Power (W) Cooling
1 0.385 0.82 4.1 None (open air)
2 0.385 0.90 4.5 None (open air)
3 0.385 0.95 4.8 None (open air)
0 0.385 0.80 4.0 Heatsinks (open air)
1 0.432 0.90 4.5 Enclosure fan & heatsinks
2 0.432 0.96 4.8 Enclosure fan & heatsinks
3 0.432 1.02 5.1 Enclosure fan & heatsinks

Temperature measurements: I made comparative measurements of the SoC internal temperature with and

without the heatsinks and with and without the PCB installed in a fan cooled enclosure (table 3). The

temperature measurements were made using the following sequence:

 Run AirSpy Server but no connection. Measure temperature 15 minutes later;

 Connect first client and Play. Measure temperature 0.5 to 1 hour later;

 Connect second client and Play. Measure temperature 0.5 to 1 hour later;

 Connect third client and Play. Measure temperature 0.5 to 1 hour later.

While the measured temperatures were well within the allowable range for the components, they were

measured with a relatively low ambient temperature and with a maximum of only three active connections. As a

first approximation, for a given number of connections, every 1 °C increase in ambient temperature will raise the

operating temperature 1 °C. Additional active connections likely will increase the SoC temperatures.

Table 3 ~ RPi3 AirSpy Server SoC temperature measurements with and without a fan and
heatsinks. Ambient temperature +19 °C. The elapsed time between Start and End was 0.5 to
1 h to allow the temperatures to stabilize. All measurements were with 2 MHz bandwidth.

Cooling method Start (°C) End (°C) Rise (°C) Active connections
None (open air) 40.8 62.3 21.5 1
None (open air) 62.3 67.1 4.8 2
None (open air) 67.1 72.0 4.9 3
Heatsinks (open air) 31.7 60.7 29.0 1
Enclosure fan & heatsinks 32.2 44.0 11.8 1
Enclosure fan & heatsinks 44.0 47.2 3.2 2
Enclosure fan & heatsinks 47.2 49.4 2.2 3

The SoC internal temperature was measured by entering the following string at the PuTTY command line

prompt:
vcgencmd measure_temp && date

The first part of the command displays the SoC internal temperature and the second part provides a timestamp.

The CPU load can be monitored with the top or htop process viewer application, which is similar to the Windows

Task Manager. For example, to view the Raspberry Pi processes with htop enter the command (figure 19):
htop

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 21

For the above temperature and CPU process measurements, the AirSpy Server was run from one PuTTY session

and the measurements taken from another simultaneous PuTTY session.

Figure 19 ~ Screenshots of the htop application. Left: AirSpy Server running but no connection. Note the negligible loads on
the four CPU cores listed in top-left half of the window. Right: AirSpy Server running and one active client connection. Note
that core 1 load = 100%, core 2 load = 59%, core 3 load = 70% and core 4 load = 2%. The individual processes are listed
below the core load report but only a portion of the full list is shown here.

8. References and Weblinks

{AirSpy} https://airspy.com/

{AirSpyPkg} https://airspy.com/?ddownload=3130

{Forum} https://airspy.groups.io/g/main

{Noise} http://www.reeve.com/Documents/Noise/Reeve_Noise_5_NFMeas.pdf

{NTP} http://www.reeve.com/Documents/Articles%20Papers/Reeve_NTP-MeinMon_Install.pdf

{RPiBasic} http://www.reeve.com/Documents/Articles%20Papers/Reeve_RPi_BasicSetup.pdf

{SDR-Radio} http://www.sdr-radio.com/

{Spyserver} https://airspy.com/spy-servers/

{Static} http://www.reeve.com/Documents/Articles%20Papers/Reeve_RPi_StaticIP.pdf

{Stretch} https://www.raspberrypi.org/downloads/raspbian/

{Volutz} http://volutz.com/

9. Preprogrammed Memory Card Available

A preprogrammed memory card, provisioned as described above for automatic operation, is available for 15

USD, which includes postage to United States destinations and its territories. For other destinations, please

inquire. Email: orderinfo@reeve.com. Be sure to include a meaningful subject line.

See last page for copyright and document information, File: Reeve_RPi_AirSpyServer.doc, Page 22

Document information

Author: Whitham D. Reeve

Copyright: © 2018 W. Reeve

Revisions: 0.0 (Draft started 27 Jan 2018)

0.1 (Added temperature and load current data, verified procedures, 29 Jan 2018)

0.2 (Formatted figures, 30 Jan 2018)

0.3 (Cleanup, 03 Feb 2018)

0.4 (Added auto-start service, 06 Feb 2018)

0.5 (Rearranged introduction, 08 Feb 2018)

0.6 (Expanded timekeeping explanation, 09 Feb 2018)

0.7 (Added RPi3 power cable, 12 Feb 2018)

0.8 (Minor cleanup, 21 Feb 2018)

0.9 (Minor cleanup, 25 Feb 2018)

1.0 (Added R2 and Mini discontinued, 06 Mar 2018)

1.1 (Added RPi2, 08 Mar 2018)

1.2 (Added change device type, 21 Mar 2018)

1.3 (Added HF+ procedures, 26 Mar 2018)

1.4 (Cleanup for distribution, added RPi3+, 01 Apr 2018)

1.5 (Added restart to service unit file, 03 Apr 2018)

1.6 (Added Volutz link, 11 Sep 2018)

Word count: 7958

File size: 4772864

